

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 Odd Semester Examination: Oct Nov.2024

Faculty: Science and Technology

Program:BScGen04

SET : A c(Mathematics) Course Type: core

Program (Specific): BSc(Mathematics)

Class: TYBSc(Mathematics)
Name of the Course: Operations Research
Course Code:MT 355(A)

Time: 2Hrs
Paper: V
Max Marks: 35
Semester: V

Instructions to the candidate:

1) There are 3 sections in the question paper. Write each section on separate page.

2) All Sections are compulsory.

3) Figures to the right indicate full marks.

4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1. Attempt any FIVE of the following.

(5*2=10 marks)

- a) Identify the direction of decrease in Z when minimize $Z = 4x_1 2x_2$.
- b) Define slack and surplus variables.
- c) Define linear programming problem.
- d) Write the dual of Max $Z = 3x_1 + 25x_2$

Sub to,
$$2x_1 + 4x_2 \ge 40$$

$$3x_1 + 2x_2 \ge 50, x_1, x_2 \ge 0.$$

e) Determine the feasible space for the following constraint.

$$-x_1 + x_2 \ge 0$$
, $x_1, x_2 \ge 0$

f) Write the canonical form of

Max
$$Z=3x+5y$$

Sub to,
$$x-3y=4$$

$$-x+y \ge 1, x, y \ge 0$$

g) Define degeneracy in a Transportation Problem. How is it resolved?

SECTION: B

Q2. Attempt any THREE of the following.

(3*5=15 marks)

a) Solve the LPP by simplex method.

$$Max Z = 5x + 3y$$
Sub to,
$$3x + 5y \le 15$$

$$6x + 2y \le 24 \qquad x \ge 0, y \ge 0.$$

b) Find the optimal solution of the following LPP by algebraic method:

Max
$$Z = 3x_1 + 5x_2 - 2x_3$$

Sub to, $x_1 + 2x_2 + 2x_3 \le 10$
 $2x_1 + 4x_2 + 3x_3 \le 15$, x_1 , x_2 , $x_3 \ge 0$.

c) The table given below has been taken from the solution procedure of transportation problem.

	X	Y	Z	Supply
A	31 (4)	24 (8)	(8)	56
В	41 (16)	(24)	41 (16)	82
С	(8)	77 (16)	(24)	77
Demand	72	102	41	

Find optimal solution, check whether it is optimal or not.

d)) Write the dual of the following primal problem.

$$Max Z = 25x - 12y$$
Sub to,
$$2x + 3y \ge 2$$

$$-2x + 6y = 8$$

$$12x + 13y \le 30$$

 $x \ge 0$, y is unrestricted in sign.

e) Determine Initial basic feasible solution of the following transportation problem by north west corner method and optimize it.

	W1	W2	W3	W4	Capacity
O1	6	8	8	5	30
O2	5	11	9	7	40
О3	8	9	7	13	50
Demand	35	28	32	25	

SECTION: C

Q3. Attempt any ONE of the following.

(1*10=10 marks)

a) Use the Simplex Method to solve the following LPP

Max
$$Z = 3x_1 + 25x_2 + 4x_3$$

Sub to, $2x_1 + 3x_2 \le 8$
 $2x_1 + 5x_3 \le 10$
 $3x_1 + 2x_2 + 4x_3 \le 15$ $x_1, x_2, x_3 \ge 0$.

b) Reddy Mikks produces both interior and exterior paints from two raw materials M_1 and M_2 . The following table provides the basic data of the problem.

R	Exterior Paint	Interior Paint	Max. daily
			availability
Raw material M_1	6	4	24
Raw material M ₂	1	2	6
Profit per tons	5	4	-

A market survey indicates that the daily demand for interior paint cannot exceed that of exterior paint by more than 1 ton. Also, maximum daily demand of interior paint is 2 tons. Formulate the LPP and solve graphically. Also determine the range of optimality $\frac{c_1}{c_2}$.